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Carbon-sulfur [n]helicenes correspond to unique-oligo-
thiophenes that are oligomers of,&), helix, with all sulfur atoms
positioned at the molecular periphéry. The electronic structure
of such oligomers is affected by helical curvature and cross-
conjugation of the carboencarbon frameworK,in contrast to achiral
and conjugatedx-oligothiophenes, which are widely studied as
electronic materials Such cross-conjugated]pelicenes with large
n may provide materials with extraordinary chiral properties and
transparency in the optical regiénThe recent advances in
development of efficient non-photochemical routes to nonracemic
[n]helicenes are limited ton < 8.2b¢ In particular, asymmetric
syntheses of rfhelicenes have been recently extended to [7]-
heliceneg!3d

(C5S),, helix

Herein we describe the asymmetric synthesis and characterization(2

of helical (GS), p-undecathiophenel. Using helical 5-hep-
tathiophene as a reference, the optical band gig) for the (GS),
helix polymer is estimated.

The synthetic approaches foare based upon either mono- or
tri-annelation, using-{)-sparteine-mediated asymmetric induction
(Schemes 1 and 2.5

For the mono-annelation route, Pd-mediated reductive CC-
homocoupling of [5]helicen&3 gives decathiopheng (Scheme
1). Treatment of4 with LDA (2.4 equiv) gives dilithiated
intermediate4-Li,, showing atH NMR spectrum with one singlet
ato ~ 4.841 ppm, assigned to tifehydrogens; in the presence of
(—)-sparteine, two singlets at~ 5.656 and 5.517 ppm with relative
integrations of 1:1 are observed (Figure® Tjhus,4-Li, is formed
in good yield and no asymmetric induction is detected at this stage.
Addition of bis(phenylsulfonyl)sulfide ((PhSBS) to 4-Li/(—)-
sparteine gives [11]helicene-J-1 and variable amounts of bypro-
duct (—)-5. 'TH NMR spectra of the crude mixtures indicate that
the ratios of5 to 1 are in the range from negligible to 0.69, with
the greater ratios associated with higher ee’s fo-1 and lower
[o]p for (—)-5.78abBased upon chirooptical data, the predominant
enantiomers of nonracemieJ-1 and (-)-5 are derived fron#-Li,
with opposite configuration®.Thus, the asymmetric induction
leading to ()-1 may be viewed as the result of kinetic resolution
of 4-Li,/(—)-sparteine diastereomers via formation of byproduct
(-)-5.

For the tri-annelation route, octathiophenées prepared by Pd-
mediated reductive CC-homocoupling of tetrathioph@&iéScheme
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Scheme 1 . Asymmetric Synthesis of (—)-1 via Mono-annelation?
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aReagents and conditions: (i) Pd®u)s). (0.6 equiv), kPOs (2.1
equiv), toluene, 75C for 3 h, (ii) LDA (2.4 equiv), (-)-sparteine (3.6
equiv), EpO/hexane (325:1) and 3% benzemg-0 °C for 5 min, then rt
for 20 min, (iii) (PhSQ).S (~1.2 equiv).

Scheme 2. Asymmetric Synthesis of (+)-1 via Tri-annelation?
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Figure 1. H NMR (500 MHz, EtO/hexane (325:1) and 3% benzetg-
296 K) spectrum for 3 mMi4-Li,, obtained with LDA (2.4 equiv)X)-
sparteine (3.6 equiv). Unknown impurity is labeled with asterisk.

2). Treatment of7 with excess amount of LDA)-sparteine at
elevated temperature is followed by quenching with (P& to
give the products of selective di-annelation and tri-annelation, i.e.,
4 and ()-1, respectively:.1°Notably, the mono-annelation (Scheme
1) and tri-annelation (Scheme 2) produce [11]helicdn&vith
opposite configurations.
Whenn-BuLi/(—)-sparteine is used as a base, the selectivity of
the tetralithiation at ther;- and o,-positions is greatly improved,
as indicated by the deuterium quenching experiments and di-
annelation of7 to give 4 in ~30% yield1%0.11 Therefore, the most
efficient approach to nonracemic [11]helicehimvolves a sequence
of di-annelation (Scheme 2) and mono-annelation (Scheme 1).
The X-ray structures of racemic crystals of [11]helicdnand
[7]helicene2!? show that both molecules are helical and possess
an approximate two-fold symmetry (Figure 2).

10.1021/ja055414c CCC: $30.25 © 2005 American Chemical Society
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Figure 2. Molecular structure and conformation for [11]helicehétop
view, A; side view, B) and [7]helicen2 (top view, C; side view, D). Carbon
and sulfur atoms are depicted with thermal ellipsoids set at the 50%
probability level. Only one of the two unique moleculeslgimolecule A)

is shown; hydrogen atoms are omitted for clarity.
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Figure 3. UV—vis electronic absorption spectra fd; 2, and 8 in
cyclohexane at room temperature. Inset: absorption onsets.

In the structures ol and2, the individual thiophene rings are
approximately planar with largest mean deviation of the least-
squares 0.0070.041 A and 0.0140.030 A, respectively. The

Cyclic voltammetry ofl and 2 gives reversible waves at the
first oxidation potentialsk;® = 1.205+ 0.01 and 1.285- 0.01 V,
respectively, corresponding to oxidation to the radical cations.

The identical electronic absorption onsets and near convergence
of the first oxidation potentials fdt and2 are consistent with cross-
conjugation in helical oligothiophendsand2. On the basis of the
absorption onsets at 35856 nm,Ey ~ 3.5 eV is estimated for
the (GS), helix polymer.

In summary, asymmetric, atom-efficient; \-sparteine-mediated
syntheses provided enantiomeric excess of eittgr @r (—)-[11]-
helicenel. This synthetic method should be applicable to the higher
homologues ofl, as well as other thiophene-basetdhklicenes.
The electron localization in the §S), helix has an onset @ < 7,
with optical band gajEg ~ 3.5 eV.
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using samples from the preparative-scale reaction mixtures.

angles between the least-squares planes of the neighboring thiophene (7) For the limiting ratios o6 to 1, the isolated yield (and ee) for-j-1 are

rings are 4.8-10.4 and 4.5-8.5° for 1 and 2, respectively. With

the middle thiophene ring as a reference, the inner (C2, C3, C5, ...,
C23) helix climbs 4.20 A(and 4.36 A) and turns in-plane by 39.6
(and 40.2) per thiophene (436and 442 for the entire helix) for

the two unique molecules df Analogous values fa2 are 1.94 A

and 39.8 (278). Thus, the helical curvatures of thesystems are
similar in 1 and 2.

Crystal packing ofl is characterized by multitude of short
intermolecular S- - -S contacts, e.g., for one of the two unique
molecules (molecule A), 10 homochiral and 2 heterochiral short
S- - -S contacts are found.

UV —vis electronic absorption spectra for homologous-dietyl
oligothiophenes, with 3, 7, and 11 annelated thiophene rings, i.e.,
trithiophene 8 and helicene®2 and 1, are consistent with the

approximately linear increase of the integrated absorbance in the

190-400 nm region vs the number of annelated thiophene rings
(Figure 3)1314 However, the red-shift between two helical oligo-
thiophenesX vs 2) is small; in fact, the absorption onsets at 355
356 nm are identical for helical undecathiopheheand hep-
tathiophene?, but significantly red-shifted relative to the onset at
~317 nm for planar trithiopheng.

67% (ee 3%) and 19% (ee 25%). Determinations of ee are described in
the Supporting Information.

(8) (a) (+)-1 (cyclohexane, corrected for ee 70.6%y]4 ~ —1350; CD,
AmadNM (A€ma/L Mol cm™1) 294 (—122), 266 (-24), 257 (-44), 242
(53), 227 101), 212 (73), 20014) (Figure S11). (b)-)-5 (cyclo-
hexane): ee’s could not be determined] = —320 (—150); CD, one
negative couplet (Figure S12). (c))-Helicenes and their axially chiral
derivatives possessing negative couplet are expected to possess opposite
configurations: Miyasaka, M.; Rajca, A.; Pink, M.; RajcaChem. Eur.

J. 2004 10, 6531-6539.

(9) The only other example of tri-annelation is photochemical cobalt-catalyzed
alkyne trimerization to [9]helicenes in-8.5% yields, ref 2e.

(10) (a) The product ofi,a,-mono-annelation is isolated as well. (b) Selective
lithiation at thea,- and o,-positions may be due to less steric hindrance,
compared to the innexs-positions.

(11) Selectivan,,a,-tetradeuteration of is observed upon lithiation with either
near-stoichiometric (4.4 equiv) or excess (6.4 equiv) amoumtBELi
in the presence of()-sparteine, followed by addition of MeOD.

(12) Analogous LDA/{)-sparteine-mediated di-annelation of hexathiophene

(obtained by cross-coupling of 4;dibromo-dithieno[2,3-b:32'-d]-

thiophene and 2-octyl-5-bromothiophene) gives [7]helicrie ~20%

yields. Synthetic details pertaining foand its gelator properties will be
reported elsewhere.

UV—vis (cyclohexane)lma/nm (ema/L Mol~t cm™1): (a) 1, 265 (4.98

x 10%), 243 (5.21x 10%), 213 (6.41x 10%; (b) 2, 256 (4.95x 10%), 223

(%.440 x 10%; (c) 8, 255 (2.08x 10%, 240 (1.75x 10%, 221 (3.47x

10%).

(13)

(14) The conclusion about the linearity may only be tentative, as only three
data points withR? of only 0.98 are used.
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